X-ray Windows

Ultra-thin AP5 X-ray Windows

Datasheet

Mounted AP5 X-ray Window

Applications

X-ray Detectors

- Silicon Drift Detectors (SDD)
- Si(Li) Detectors
- Si-PIN Detectors

AP5 ultra-thin polymer windows are the highest performing x-ray windows available for low and high energy x-ray analysis. AP5 windows are ideal for applications that require maximum transmission of low energy x-rays, high mechanical strength, light rejection, vacuum tightness, reliability, and increased solid angle. AP5 windows are used in applications where high temperature, light element detection is important and beryllium windows are ineffective (see Figure 1 and 2). AP5 windows can be used in all applications where AP3 windows are used.

Features	Benefits	
Ultra-thin polymer film	Maximum transmission of low energy x-rays	
	Charge dissipation	
Thin multi-layer coating	UV, IR and visible light rejection	
	Corrosion resistant, hermetic seal	
	High mechanical strength, durable	
Carbon support structure	Improved x-ray transmission	
	Unique design geometries possible	
High purity	Minimal spectral contamination	
Uniform thickness	Consistent transmission across entire window	

Window Specifications

Open Area: 74% - 79%, depending on size[†]

Helium Leak Rate: <1x10⁻¹⁰ mbar • L/s[‡]

Max. Temp. (1 atm Differential): 40°C Max. Temp.(Zero Pressure Differential): 70°C Front Pressure Limit (Atmosphere Side): 2 atm Back Pressure Limit (Vacuum Side): 0.5 atm

†See Table 2

*See "Light Rejection and Vacuum Tightness" section below

Light Rejection and Vacuum Tightness

AP5 windows provide good rejection of UV, IR, and visible light. AP5 windows also provide a hermetic barrier to gases. Every window is tested and is guaranteed to have a leak rate of less than 1×10^{-10} mbar • L/s of helium. The helium leak rate is tested by exposing the parts to a minimum of 0.5 SCFH helium sprayed immediately above and around the window on a calibrated helium leak detector for a minimum of 30 seconds. Test conditions may need to be adjusted depending on mount geometry.

Window Composition and Structure

AP5 windows are composed of ultra-thin layers of polymer, and other thin films with low Z compositions. AP5 windows are supported by a carbon support structure designed to add support for the film at a minimal profile with maximum open area and acceptance angle. Moxtek® attaches each window to a mount using vacuum compatible epoxy adhesive.

	AP3	AP5
Thickness (µm)	380	265
Rib width (µm)	59	45
Opening width (µm)	190	190
Open Area %	76%	79% [†]
Acceptance Angle	53°	72°

Thickness

Rib
Width
Opening
Width

Mechanical Strength

AP5 windows are supported by a rigid carbon grid. This patented window design enables the AP5 window to survive over 10,000 cycles at room temperature and a differential pressure of 1.2atm with no degradation in window performance.

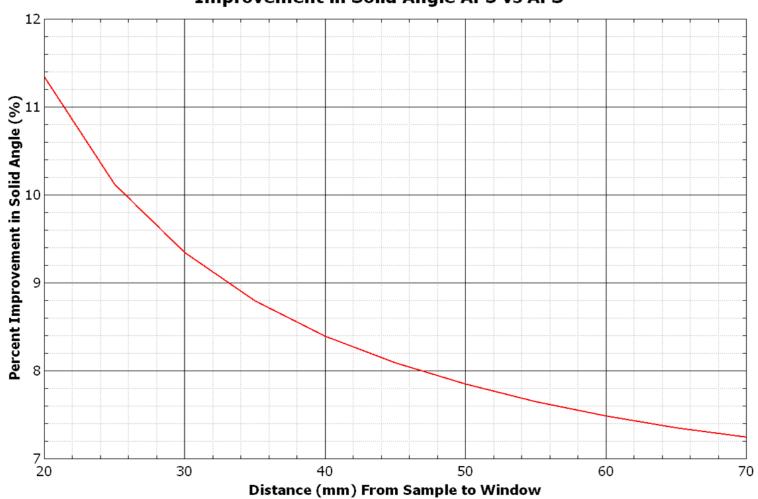
Table 1 Elemental X-ray Transmission

Atomic Number	Element		nission (% of mum)
		AP3	AP5
14	Si	74%	73%
13	Al	75%	75%
12	Mg	72%	73%
11	Na	69%	69%
9	F	54%	54%
8	0	47%	47%
7	N	31%	31%
6	С	47%	49%
5	В	29%	23%
4	Ве	9%	7%

Table 1 Elemental X-ray Transmission (Kα) of AP3 Windows

Table 2 AP Window Open Area Percentages

Active Area	Open Area		
	AP3	AP5	
30mm ²	77%	79%	
50mm ²	77%	79%	
80mm²	77%	74%	
140mm ²	77%	78%	


Table 2 AP Window Open Area Percentages

[†] See Table 2

Acceptange Angle Graphic

X-ray Transmission, Composite Film and Grid

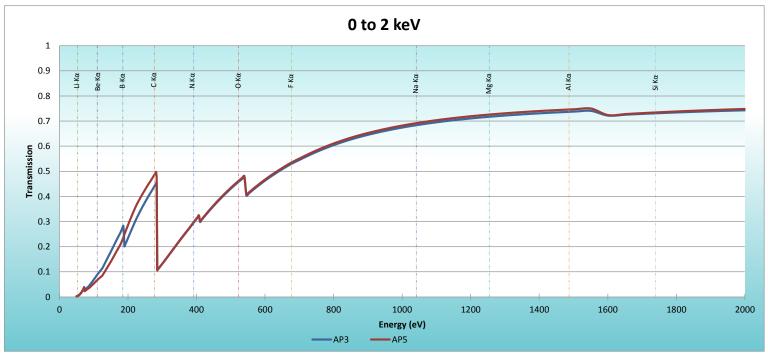


Figure 1 0-2 keV X-ray Transmisson of AP3 and AP5 Windows

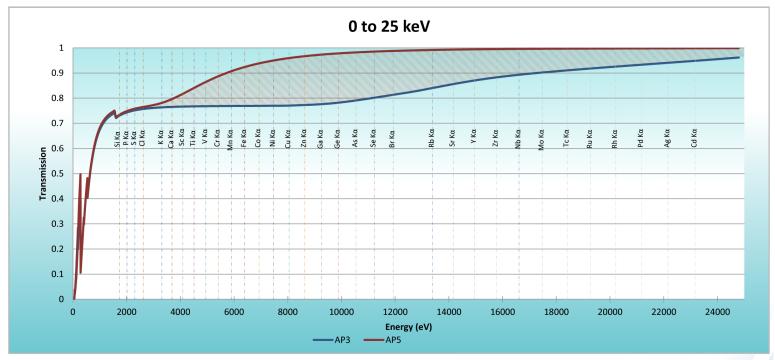


Figure 2 0-25 keV X-ray Transmisson of AP3 and AP5 Windows

Mount Design

Please refer to WIN-TECH-1003 for Ultra-thin AP X-ray Window Mount Design requirements, available at www.moxtek.com.

